Parity learning
Parity learning is a problem in machine Learning. An algorithm claiming to solve this problem must try to guess the function ƒ(x), given some samples (x, ƒ(x)) and the assurance that ƒ computes the parity of bits at some fixed locations. The samples are generated using some distribution over the input. The problem is easy to solve using Gaussian elimination provided that enough number of samples (from a distribution which is not too skew) are provided to the algorithm.
Noisy version
In this version, the samples may contain some error. Instead of samples (x, ƒ(x)), the algorithm is provided with (x, y), where y = 1 − ƒ(x) with some small probability.
See also
References
- Avrim Blum, Adam Kalai, and Hal Wasserman, “Noise-tolerant learning, the parity problem, and the statistical query model,” J. ACM 50, no. 4 (2003): 506–519.
- Adam Tauman Kalai, Yishay Mansour, and Elad Verbin, “On agnostic boosting and parity learning,” in Proceedings of the 40th annual ACM symposium on Theory of computing (Victoria, British Columbia, Canada: ACM, 2008), 629–638, http://portal.acm.org/citation.cfm?id=1374466.
- Oded Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in Proceedings of the thirty-seventh annual ACM symposium on Theory of computing (Baltimore, MD, USA: ACM, 2005), 84–93, http://portal.acm.org/citation.cfm?id=1060590.1060603.
‹The stub template below has been proposed for renaming to . See stub types for deletion to help reach a consensus on what to do.
Feel free to edit the template, but the template must not be blanked, and this notice must not be removed, until the discussion is closed. For more information, read the guide to deletion.›